Ir para o conteúdo principal
#Referências
- AMAZON. What is Apache Spark?. Disponível em: <https://aws.amazon.com/big-data/what-is-spark/>. Acesso em: 09 de março de 2022.
- AMAZON. What is a data lake?. Disponível em: <https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/>. Acesso em: 07 de março de 2022.
- AMAZON. What is Hadoop?. Disponível em: <https://aws.amazon.com/emr/details/hadoop/what-is-hadoop/>. Acesso em: 09 de março de 2022.
- ANAND, K.. Can Big Data replace an EDW?. Disponível em: <https://mastechinfotrellis.com/blog/can-big-data-replace-edw. Publicado em: 23 de Julho de 2019. Acesso em: 08 de março de 2022.
- ARMBRUST, M., GHODSI, A., XIN, R., ZAHARIA, M. Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics. 11th Annual Conference on Innovative Data Systems Research. 2021.
- BARBIERI, C. Governança de Dados: Práticas, conceitos e novos caminhos. Rio de Janeiro: Alta Books, 2019.
- BEGOLI, B., GOETHERT, I. KNIGHT, K. A Lakehouse Architecture for the Management and Analysis of Heterogeneous Data for Biomedical Research and Mega-biobanks. 2021 IEEE International Conference on Big Data (Big Data). P. 4643-4651. 2021.
- DAMA INTERNATIONAL. DAMA-DMBOK: Data Management Body of Knowledge (2nd Edition). Denville, NJ, USA. Technics Publications. 2017.
- DEHGHANI, Z.. How to Move Beyond a Monolithic Data Lake to a Distributed Data Mesh. Disponível em: <https://martinfowler.com/articles/data-monolith-to-mesh.html>. Publicado em: 20 de maio de 2019. Acesso em: 15 de março de 2022.
- GANDOMI, A., HAIDER, M. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management. V. 35, P. 137-144. 2015.
- KIMBALL, R., ROSS, M. The Kimball Group Reader: Relentlessly Practical Tools for Data Warehousing and Business Intelligence. Indianapolis. Wiley. 2010. 565 p.
- KIMBALL, R., ROSS, M. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling (3nd Edition). Indianapolis. Wiley. 2013. 720 p.
- PEREIRA, D., OLIVEIRA, P., RODRIGUES, F. Data warehouses in MongoDB vs SQL Server: A comparative analysis of the querie performance. Information Systems and Technologies (CISTI), 10th Iberian Conference. P. 1–7. 2015.
- INMON, W. H. Building the Data Warehouse. Indianapolis. Wiley. 2005. 428 p.
- INMON, B. Data Lake architecture: Designing the Data Lake and avoiding the garbage dump. Indianapolis. Technics Publications. 2016. 168 p.
ANAND,KHINE, K..P. P., WANG, Z. S. Data lake: a new ideology in big data era. CanITM Web of Conferences, V 17. 2018.
- MILOSLAVSKAYA, N., TOLSTOY, A. Big
Datadata, replacefast andata EDW?and data lake concepts. 7Th annual international conference on biologically inspired cognitive architectures (BICA 2016).. DisponívelNY, em:USA. <https://mastechinfotrellis.com/blog/can-big-data-replace-edw.Procedia PublicadoComputer em:Science. 23V. de88, JulhoP. de1–6. 2019. Acesso em: 08 de março de 2022.2016.
- MICROSOFT. What is business intelligence?. Disponível em: <https://powerbi.microsoft.com/en-us/what-is-business-intelligence/>. Acesso em: 07 de março de 2022.
- TABLEAU. Business Intelligence: What It Is, How It Works, Its Importance, Examples, & Tools. Disponível em: <https://www.tableau.com/learn/articles/business-intelligence>. Acesso em: 07 de março de 2022.
- GARTNER. Business Intelligence (BI) Platforms. Disponível em: <https://www.gartner.com/en/information-technology/glossary/bi-platforms>. Acesso em: 07 de março de 2022.
- GARTNER. Master Data Management (MDM). Disponível em: <https://www.gartner.com/en/information-technology/glossary/master-data-management-mdm>. Acesso em: 18 de março de 2022.
- MONGODB. Database Scaling. Disponível em: <https://www.mongodb.com/databases/scaling>. Acesso em: 09 de março de 2022.
- SAS. Big Data: What is and why it matters. Disponível em: <https://www.sas.com/pt_br/insights/big-data/what-is-big-data.html>. Acesso em: 08 de março de 2022.
- SAS. Big Data Analytics: What is and why it matters. Disponível em: <https://www.sas.com/pt_br/insights/analytics/big-data-analytics.html>. Acesso em: 09 de março de 2022.
AMAZON. What is a data lake?. Disponível em: <https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/>. Acesso em: 07 de março de 2022.
AMAZON. What is Hadoop?. Disponível em: <https://aws.amazon.com/emr/details/hadoop/what-is-hadoop/>. Acesso em: 09 de março de 2022.
AMAZON. What is Apache Spark?. Disponível em: <https://aws.amazon.com/big-data/what-is-spark/>. Acesso em: 09 de março de 2022.
ORACLE. What is Big Data?. Disponível em: <https://www.oracle.com/big-data/what-is-big-data/.> Acesso em: 08 de março de 2022.
DEHGHANI, Z.. How to Move Beyond a Monolithic Data Lake to a Distributed Data Mesh. Disponível em: <https://martinfowler.com/articles/data-monolith-to-mesh.html>. Publicado em: 20 de maio de 2019. Acesso em: 15 de março de 2022.
- GOASDUFF, L.. The Best Ways to Organize Your Data Structures. Disponível em: <https://www.gartner.com/smarterwithgartner/the-best-ways-to-organize-your-data-structures>. Publicado em: 20 de junho de 2020. Acesso em: 21 de março de 2022.
- HARRAB, Y.E. How to differentiate a Data Hub, a Data Lake and a Data Warehouse. Disponível em: <https://www.semarchy.com/blog/how-to-differentiate-a-data-hub-a-data-lake-and-a-data-warehouse/>. Publicado em: 09 de março de 2020. Acesso em: 21 de março de 2022.
- ORACLE. What is Big Data?. Disponível em: <https://www.oracle.com/big-data/what-is-big-data/.> Acesso em: 08 de março de 2022.
- OREŠČANIN, D., HLUPIĆ, T. Data Lakehouse - a Novel Step in Analytics Architecture. 44th International Convention on Information, Communication and Electronic Technology (MIPRO). V. 44, P. 1242-1246. 2021.
- OUSSOUS, Ahmed et al. Big Data technologies: A survey. Journal of King Saud University - Computer and Information Sciences. V. 30, E. 4, P. 431-448. Outubro de 2018.
- SALINAS, S.O., LEMUS, A. C. N. Data Warehouse and Big Data Integration. International Journal of Computer Science & Information Technology (IJCSIT). V. 9, N.2 E. 4, P. 1-17. Abril de 2017.
GANDOMI, A., HAIDER, M. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management. V. 35, P. 137-144. 2015.
PEREIRA, D., OLIVEIRA, P., RODRIGUES, F. Data warehouses in MongoDB vs SQL Server: A comparative analysis of the querie performance. Information Systems and Technologies (CISTI), 10th Iberian Conference. P. 1–7. 2015.
KHINE, P. P., WANG, Z. S. Data lake: a new ideology in big data era. ITM Web of Conferences, V 17. 2018.
- SAWADOGO, P., DARMONT, J. On data lake architectures and metadata management. Journal of Intelligent Information Systems. V. 56. P. 97-120. 2021.
MILOSLAVSKAYA, N., TOLSTOY, A. Big data, fast data and data lake concepts. 7Th annual international conference on biologically inspired cognitive architectures (BICA 2016). NY, USA. Procedia Computer Science. V. 88, P. 1–6. 2016.
ARMBRUST, M., GHODSI, A., XIN, R., ZAHARIA, M. Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics. 11th Annual Conference on Innovative Data Systems Research. 2021.
OREŠČANIN, D., HLUPIĆ, T. Data Lakehouse - a Novel Step in Analytics Architecture. 44th International Convention on Information, Communication and Electronic Technology (MIPRO). V. 44, P. 1242-1246. 2021.
BEGOLI, B., GOETHERT, I. KNIGHT, K. A Lakehouse Architecture for the Management and Analysis of Heterogeneous Data for Biomedical Research and Mega-biobanks. 2021 IEEE International Conference on Big Data (Big Data). P. 4643-4651. 2021.
BARBIERI, C. Governança de Dados: Práticas, conceitos e novos caminhos. Rio de Janeiro: Alta Books, 2019.
DAMA INTERNATIONAL. DAMA-DMBOK: Data Management Body of Knowledge (2nd Edition). Denville, NJ, USA. Technics Publications. 2017.